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Abstract. Ground states of three-dimensional ±J Ising spin glasses are calculated for sizes up to 143 using
a combination of a genetic algorithm and cluster-exact approximation. For each realization several inde-
pendent ground states are obtained. Then, by applying ballistic search and T = 0 Monte-Carlo simulations,
it is ensured that each ground state appears with the same probability. Consequently, the results represent
the true T = 0 thermodynamic behavior. The distribution P (|q|) of overlaps is evaluated. For increasing
size the width of P (|q|) and the fraction of the distribution below q0 ≡ 0.5 converge to zero. This indicates
that for the infinite system P (|q|) is a delta function, in contrast to previous results. Thus, the ground-state
behavior is dominated by few large clusters of similar ground states.

PACS. 75.10.Nr Spin-glass and other random models – 75.40.Mg Numerical simulation studies – 02.10.Jf
General mathematical systems

1 Introduction

Recently, a new algorithm for studying the ground-state
landscape of finite-dimensional spin glasses [1] was in-
troduced [2]. It could be shown that this method is in-
deed able to calculate true ground states [3]. The ±J spin
glass (see below) exhibits a ground-state degeneracy, i.e.
many different ground states exist for each realization. Re-
sults [4] describing the distribution of the ground states
depend on the statistical weights of the states which are
determined by the algorithm which is used. Usually, dif-
ferent ground states exhibit different weights [5], which
is thermodynamically incorrect. Here, a new technique is
applied which avoids this problem.

In this work, three-dimensional Edwards-Anderson
(EA) ±J spin glasses are investigated. They consist of
N spins σi = ±1, described by the Hamiltonian

H ≡ −
∑
〈i,j〉

Jijσiσj . (1)

The sum runs over all pairs of nearest neighbors. The spins
are placed on a three-dimensional (d = 3) cubic lattice
of linear size L with periodic boundary conditions in all
directions. Systems with quenched disorder of the inter-
actions (bonds) are considered. Their possible values are
Jij = ±1 with equal probability. To reduce the fluctua-
tions, a constraint is imposed, so that

∑
〈i,j〉 Jij = 0.

One of the most important questions is whether many
pure states exist for realistic spin glasses. A pure state
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is characterized by all possible correlation functions be-
tween the spins of a system. For the infinitely ranged
Sherrington-Kirkpatrik (SK) Ising spin glass this ques-
tion was answered positively by the continuous replica-
symmetry-breaking mean-field (MF) scheme by Parisi [6].
But also a complete different model is proposed: the
Droplet Scaling (DS) theory [7–11] suggests that only two
pure states (related by a global flip) exist and that the
most relevant excitations are obtained by reversing large
domains of spins (the droplets). From the ground state
point of view the existence of many pure states means
that two ground states may differ by an arbitrary number
of spins. Otherwise two ground states would only differ
by the spin orientations in some finite domains, which
is always possible in the ±J model because of the dis-
crete structure of the interaction distribution. A detailed
discussion can be found in [12], where the metastate ap-
proach [13] is used to thoroughly analyze MF, DS and
other intermediate scenarios.

While earlier Monte-Carlo (MC) simulations [14] suffer
from small system sizes or equilibration problems [15], re-
cent results of simulations [16] at temperatures just below
Tc seem to find evidence for the MF picture. In [17], by
applying a Migdal-Kadanoff approximation, MF behavior
was found for small systems at temperatures slightly be-
low Tc, where the correlation length exceeds the system
size. But by going to lower temperatures or larger systems
the DS picture turned out to be more appropriate. Conse-
quently, the analysis of true ground states should clarify
the issue. In [18] ground states were calculated using mul-
ticanonical MC sampling, but no discrimination between
MF and DS could be made because of too small system
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sizes. In a recent work [19] evidence for the DS picture
was found by calculating ground states of systems with
Gaussian distribution of the interactions and with differ-
ent kinds of boundary conditions. Using cluster-exact ap-
proximation true ground states [3] were studied and MF
behavior was found [4]. But, as mentioned at the begin-
ning, these results suffer from the fact that not all ground
states are generated with the same probability [5]. This
would indeed be the correct sampling method, since all
ground-state configurations have exactly the same energy.

In this work ground states of sizes up to L = 14 are cal-
culated and a technique is applied, which guarantees that
all ground states enter the result with the same weight, i.e.
the correct T = 0 thermodynamical behavior is obtained.
It will be shown that the main result changes dramatically:
with increasing system size the ground-state behavior is
not explained by the MF scenario.

The method presented here is not only useful when
the ground state calculation is performed using cluster-
exact approximation. Also other methods like simulated
annealing or multicanonical simulation do not guarantee
a priori that each ground state is calculated with the same
probability because always a finite number of steps is used.
Thus, the technique presented here has a wide range of
applications.

The paper is organized as follows: next a short descrip-
tion of the algorithms is presented. Then the definitions
of the observables evaluated here are shown. In the main
section the results are presented and finally a summary is
given.

2 Algorithms

For two-dimensional spin glasses without external field
with periodic boundary conditions at most in one direction
efficient polynomial algorithms for the calculation of exact
ground states are available. Recently results for systems
of size 1800×1800 were obtained [20]. On the other hand,
the calculation of ground states for three-dimensional spin
glasses belongs to the class of the NP-hard problems [21],
i.e. only algorithms with exponentially increasing run-
ning time are available. Thus, only small systems can
be treated. The basic method used here is the cluster-
exact approximation (CEA) technique [2], which is a dis-
crete optimization method designed especially for spin
glasses. In combination with a genetic algorithm [22,23]
this method is able to calculate true ground states [3] up
to L = 14. In [4] a ground-state energy for the infinite
system of e0(∞) = −1.7868(3) was extrapolated. As an
advantage, by directly calculating ground states one does
not encounter ergodicity problems or critical slowing down
like when using algorithms which are based on Monte-
Carlo methods.

But, as mentioned before, by applying pure genetic
CEA, one does not obtain the true thermodynamic distri-
bution of the ground states [5], i.e. not all ground states
contribute to physical quantities with the same weight.
For small system sizes up to L = 4 it is possible to avoid

the problem by generating all T = 0 states, i.e. averages
can be performed simply by considering each ground-state
once. Since the ground state degeneracy increases expo-
nentially with the number N of spins, this is not possible
for larger system sizes. Instead one has to choose a subset
of all configurations. The following procedure is applied to
ensure that all ground states appear with the same prob-
ability in this selection:

By performing the ballistic-search (BS) algorithm [24]
the ground states are grouped into clusters. All states
which are accessible via flipping of free spins, i.e. with-
out changing the energy, are considered to be in the same
cluster. It has been shown [24] that the number of clus-
ters defined in this way diverges exponentially in N for
the three-dimensional ±J spin glass.

The sizes of these clusters can be estimated quite ac-
curately using a variant of the BS method [24] even if only
few ground states per cluster are available. Starting from
an arbitrary state of a cluster, free spins are flipped it-
eratively, but each spin not more than once. During the
iteration additional free spins may be generated and other
spins may become fixed. When there are no more free spins
left the process stops. Thus, one has constructed a straight
path in state space from the ground state to the border
of the cluster. The number of spins that has been flipped
is denoted by lmax. By averaging over several trials and
several ground states of a cluster, one obtains an average
value lmax, which is a measure for the size V of the cluster.
In [24] a V = 2αlmax with α = 0.90(5) has been found.

After estimating the cluster sizes, a certain number of
ground states is selected from each cluster. This number is
proportional to the size of the cluster. It means that each
cluster contributes with its proper weight. The selection is
done in a manner that many small clusters may contribute
as a collection as well; e.g. assume that 100 states are used
to represent a cluster consisting of 1010 ground states, then
for a set of 500 clusters of size 107 each a total number
of 50 states is selected. This is achieved by sorting the
clusters in ascending order. The generation of states starts
with the smallest cluster. For each cluster the number of
states generated is proportional to its size multiplied by a
factor f . If the number of states grows too large, only a
certain fraction f2 of the states which have already been
selected is kept, the factor is recalculated (f ← f × f2)
and the process continues with the next cluster.

The states representing the clusters are generated by
T = 0 Monte-Carlo simulation, i.e. iteratively spins are se-
lected randomly and flipped if they are free. The ground
states which have been obtained before are used as ini-
tial configurations for the MC simulation. MC is able to
reproduce the correct thermodynamic distribution, if the
simulation time is long enough. Then, all ground-states
within a cluster are visited with the same frequency. Later
it will be shown that for the largest size L = 14 and the
largest clusters 100 MC steps per spin are sufficient.

Since each cluster appears with a weight proportional
to its size and each ground state within a cluster appears
with the same probability, on total each ground state has
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the same likelihood of being generated. Thus, the correct
thermodynamic distribution is obtained.

3 Observables

For a fixed realization J = {Jij} of the exchange inter-
actions and two replicas {σαi }, {σ

β
i }, the overlap [6] is de-

fined as

qαβ ≡ 1
N

∑
i

σαi σ
β
i . (2)

The ground state of a given realization is characterized
by the probability density PJ (q), where q is a randomly
selected value from the set of all {qαβ}. Averaging over the
realizations J , denoted by [ · ]av, results in (Z = number
of realizations)

P (q) ≡ [PJ (q)]av =
1
Z

∑
J

PJ(q). (3)

Because no external field is present the densities are sym-
metric: PJ(q) = PJ(−q) and P (q) = P (−q). Therefore,
only P (|q|) is relevant.

The Droplet model predicts that only two pure states
exist, implying that P (|q|) converges to a delta function
P (q) = δ(q − qEA) for L → ∞ (we don’t indicate the
L dependence by an index), where qEA is the maximum
value of q with P (q) > 0. On contrary, in the MF picture
the density remains nonzero for a range 0 ≤ q ≤ q1 with a
peak at qmax (0 < qmax ≤ q1). Consequently the variance

σ2(|q|) ≡
∫ 1

−1

(|q| − |q|)2P (q)dq = |q|2 − |q|2 (4)

stays finite for L→∞ in the MF pictures while σ2(|q|) ∼
L−y−df/2 → 0 is expected at T = 0 for the DS ap-
proach [25]. The combined average of a quantity X over
all ground states and over the disorder is denoted with
X. Here, y is the zero-temperature scaling exponent [7]
denoted Θ in [9,10] and df the fractal dimension of the
droplets.

To characterize the contribution from small overlap
values separately, which are due to a complex structure of
the energy landscape, the weight Xq0 of the distribution
below a given threshold q0 is calculated:

Xq0 ≡
∫ q0

0

P (|q|) dq. (5)

The overlap defined in (2) can be applied to measure the
distance dαβ between two states:

dαβ ≡ 0.5(1− qαβ) (6)

with 0 ≤ dαβ ≤ 1. For three replicas α, β, γ the usual
triangular inequality reads dαβ ≤ dαγ + dγβ . Written in
terms of q it reads

qαβ ≥ qαγ + qγβ − 1. (7)

Another characteristic attributed to the MF scheme is
that the state space exhibits ultrametricity. In an ultra-
metric space [26] the triangular inequality is replaced by
a stronger one dαβ ≤ max(dαγ , dγβ) or equivalently

qαβ ≥ min(qαγ , qγβ). (8)

An example of an ultrametric space is given by the set of
leaves of a binary tree: the distance between two leaves
is defined by the number of edges on a path between the
leaves.

Let q1 ≤ q2 ≤ q3 be the overlaps qαβ , qαγ , qγβ ordered
according their sizes. By writing the smallest overlap on
the left side in equation (8), one realizes that two of the
overlaps must be equal and the third may be larger or the
same: q1 = q2 ≤ q3. Therefore, for the the difference

δq ≡ q2 − q1 (9)

δq = 0 holds. For a finite system ultrametricity may be
violated, i.e. δq > 0. If a system becomes more and more
ultrametric with growing system size, δq should decrease
while L → ∞. When evaluating δq, the influence of the
absolute size of the overlaps should be excluded. Thus,
the third overlap is fixed: q3 = qfix. In practice overlap
triples are used where q3 ∈ [qfix, qfix2] holds. This allows
to obtain sufficient statistics. In the next section the dis-
tribution P (δq) is evaluated. For an ultrametric system
this quantity should converge to a Dirac delta function
with increasing size L [27].

4 Results

Ground states were generated using genetic CEA for sizes
L ∈ [3, . . . , 14]. The number of realizations of the bonds
per lattice size ranged from 100 realizations for L = 14
up to 1000 realizations for L = 3. One L = 14 run needs
typically 540 CPU-min on an 80 MHz PPC601 processor
(70 CPU-min for L = 12, . . . , 0.2 CPU-sec for L = 3),
more details can be found in [3]. Each run resulted in one
configuration which was stored, if it exhibited the ground
state energy. For the smallest sizes L = 3, 4 all ground
states were calculated for each realization by performing
up to 104 runs. For larger sizes it is not possible to ob-
tain all ground states, because of the exponentially rising
degeneracy. For L = 5, 6, 8 practically all clusters are ob-
tained using at most 104 runs [24], only for about 25% of
the L = 8 realization some small clusters may have been
missed.

For L > 8 not only the number of states but also the
number of clusters is too large, consequently 40 indepen-
dent runs were made for each realization. For L = 14 this
resulted in an average of 13.8 states per realization having
the lowest energy while for L = 10 on average 35.3 states
were stored. This seems a rather small number. How-
ever, the probability that genetic CEA returns a specific
ground state increases (sublinearly) with the size of the
cluster the state belongs to [28]. Thus, ground states from
small clusters do appear with a small probability. Because
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Fig. 1. Distribution Pc(q) of overlaps restricted to a ground-
state cluster for different number nMC of MC steps. 100 inde-
pendent T = 0 MC runs were performed for the largest clusters
found for L = 14 starting always from the same ground state.
By going beyond nMC = 100 the distribution does not change
any more, indicating that 100 MC steps are sufficient to ob-
tain independent ground states within a cluster for L ≤ 14.
The inset shows the mean overlap value as a function of nMC.

the behavior is dominated by the largest clusters, the re-
sults shown later on are the same (within error bars) as if
all ground states were available. This was tested explicitly
for 100 realizations of L = 10 by doubling the number of
runs, i.e. increasing the number of clusters found.

Using this initial set of states for each realization
(L > 4) a second set was produced using the techniques
explained before, which ensures that each ground state
enters the results with the same weight. The number of
states was chosen in a way, that nmax = 100 states were
available for the largest clusters of each realization, i.e. a
single cluster smaller than one hundredth of the largest
cluster does not contribute to physical quantities, but, as
explained before, a collection of many small clusters con-
tributes to the results as well. Finally, it was verified that
the results did not change by increasing nmax.

The number of MC steps used for generating the states
was determined in the following way: a ground state was
selected randomly from the largest clusters found for the
L = 14 realizations. 100 independent T = 0 MC runs of
length nMC MC steps were performed starting always from
this initial state. For the set of 100 final states the distri-
bution of overlaps was calculated. The whole process was
averaged over different realizations. In Figure 1 the av-
erage distribution Pc(q) of overlaps is shown for different
run lengths nMC. It can be seen that by increasing the
number of MC steps the ground-state cluster is explored
better. By going beyond nMC = 100 steps Pc(q) does not
change, indicating that this number of MC steps is suffi-
cient to generate ground states equally distributed within
a cluster for L = 14.

The order parameter selected here for the description
of the complex ground state behavior of spin glasses is the
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Fig. 2. Distribution P (|q|) of overlaps for L = 6, 10. Each
ground state enters the result with the same probability. The
fraction of small overlaps decreases about a factor 0.6 by going
from L = 6 to L = 10 (please note the logarithmic scale).

total distribution P (|q|) of overlaps. The result for the case
where all ground states have the same weight is shown in
Figure 2 for L = 6, 10. The distributions are dominated
by a large peak for q > 0.8. Additionally there is a long
tail down to q = 0, which means that arbitrarily different
ground states are possible. So far this is the same result
as obtained earlier [4] for the case where the weights of
the states are determined by the genetic CEA algorithm.
But there is a difference: for the old results the weight of
the long tail remains the same for all system sizes. Here
for L = 10 small overlaps are about 0.6 times less likely
than for L = 6.

To study the finite size dependence of this effect, the
variance σ2(|q|) of P (|q|) was evaluated as a function of
the system size L. The result is displayed in Figure 3.
Additionally the datapoints from [4] are given. Obviously,
by guaranteeing that every ground state has the same
weight, the result changes dramatically. To extrapolate
to L → ∞, a fit of the data to σ2

L = σ2
∞ + a0L

−a1 was
performed. A slightly negative value of σ2

∞ = −0.01(1)
was obtained, indicating that the width of P (|q|) is zero
for the infinite system. Consequently, the MF picture with
a continuous breaking of replica symmetry cannot be true
for three-dimensional ±J spin glasses. For estimating the
exponent a1 a fit to σ2

L = a0L
−a1 (omitting L = 3, 14) was

used and a value of (a1 = 1.00(4)) obtained. From the DS
theory a value of a1 = y + df/2 is expected. By using the
values y = 0.19 [3] and df = 2.2 [29] an exponent of 1.3 is
obtained. Taking into account the small system sizes and
the large error bars the difference is not too large.

In Figure 4 the behavior of the long tail is studied in
more detail. The integrated weight X0.5(L) of all over-
laps q < q0 ≡ 0.5 is shown as a function of the system
size. Again a fit is used to extrapolate the behavior of the
infinite system. A value of X∞ = −0.01(2) is obtained
confirming the result obtained above. By setting X∞ ≡ 0
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Fig. 3. Variance σ2(|q|) of the distribution of overlaps as a
function of linear system size L. The upper points show the case
were each ground state enters with a weight determined by the
genetic CEA algorithm. For the lower points each ground state
has the same probability of being included in the calculation.
The extrapolation to the infinite system results in a slightly
negative value. Consequently, the width of distribution of over-
laps appears to be zero, i.e. P (|q|) is a delta-function. The line
represents a fit to σ2

L = a0L
−a1 resulting in a1 = 1.00(4).
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Fig. 4. Fraction of the distribution of overlaps below q0 ≡ 0.5
as a function of linear system size L. Here the results for the
correct thermodynamic average is shown. The extrapolation
L→∞ results in a slightly negative value, i.e. for the infinite
systems small values of |q| occur with frequency zero. The line
represents a fit to X0.5(L) = x0L

−x1 giving x1 = 1.25(5).

and omitting L = 3, 14 an exponent of x1 = 1.25(5) is
found. This fit is displayed in Figure 4.

One might suspect that the results can be explained
by the fact that with increasing system size the behavior
is dominated more and more by one ground-state cluster.
To examine this issue the quantity Y = 1 − [

∑
c w

2
c ]av

is calculated, where wc is the relative size of cluster c.
If really one cluster dominates, wc0 → 1 for one cluster
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Fig. 5. Cumulant Y describing the distribution of cluster sizes
as a function of L. For small system sizes L ≤ 8 almost all
ground-state clusters have been obtained. The figure proves
that with increasing system size the ground-state landscape is
not dominated more and more by one cluster. The inset shows
the probability P (nc = 1) that a realization exhibits only one
ground-state cluster as a function of L.

c0 while wc is close to zero for all other clusters c. Conse-
quently, Y should vanish with increasing system size L. In
Figure 5, Y is shown as a function of L for small system
sizes L ≤ 8, where all ground-state clusters have been ob-
tained. Obviously, Y does not decrease. One reason is that
the probability P (nc = 1) that a realization exhibits just
one ground-state cluster (and its inverse) decreases with
growing system size (cf. inset). Consequently, there is no
single reason explaining the behavior of P (|q|). Addition-
ally, for the interpretation of Figure 5, one has to take into
account that the definition of a cluster, although it is very
useful for the evaluation of the ground-state landscape,
may have no physical meaning.

By collecting all results one obtains the following de-
scription for the distribution of overlaps: it consists of a
large delta-peak and a tail down to q = 0, but the weight
of that tail goes to zero with lattice size going to infin-
ity. This expression is used to point out that by going to
larger sizes small overlaps still occur: the number of arbi-
trarily different ground states diverges [24]. But the size
of the largest clusters, which determine the self overlap
leading to the large peak, diverges even faster. The delta-
peak is centered around a finite value qEA. From further
evaluation of the results qEA = 0.90(1) was obtained.

Finally, it was tested whether the ground states are ul-
trametrically organized. In Figure 6 the distribution P (δq)
is shown for system sizes L = 4, 8, 12. Each realization
enters the distribution with the same weight. With in-
creasing system size the distributions get closer to q = 0,
indicating that the systems become more and more ul-
trametric. The same conclusion can be driven from the
evaluation of the average value of δq as a function of L
(cf. inset). This result is similar to the former calcula-
tions [4], where the correct T = 0 distribution was not
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Fig. 6. Distribution P (δq) for different system sizes L =
4, 8, 12 where δq = q2 − q1 and q1 ≤ q2 ≤ q3 are triplets of
absolute values of overlaps from independent triplets of ground
states. Only triplets with q3 ∈ [0.5, 0.6] are used. For an infinite
ultrametric system δq = 0 holds. For L = 12 a running average
was used to smooth the data to make the figure more readable.
With increasing system size the distributions get closer to q = 0
indicating the increasing ultrametricity of the ground states.
The lines are guides for the eyes only. The inset shows the av-
erage value of δq as function of system size L. The straight line
represents the function 〈δq〉(L) = 0.229 × L−0.24.

obtained. But it should be stressed that ultrametricity is
only found for triplets of ground states with overlaps (here
q < q3 ≈ 0.5) smaller than values from the dominating
peak of P (|q|). By performing the thermodynamic limit
the weight of all regions of state space restricted in this
way disappears, i.e. ultrametricity disappears as well.

5 Conclusion

Using genetic cluster-exact approximation the ground-
state landscape of three-dimensional ±J spin glasses is
investigated. By applying ballistic search and T = 0
Monte-Carlo simulation it is guaranteed that each ground
state enters the result with the same probability, thus
a correct thermodynamic distribution is achieved. This
technique also can be successfully combined with other
methods which are used to generate several configurations
from a degenerate ground-state landscape, e.g. with sim-
ulated annealing or multicanonical simulation.

The distribution of overlaps is evaluated. For the infi-
nite system it consists solely of two symmetric delta-peaks.
This does not imply that there are only two ground-state
clusters remaining. On the contrary, the number of ground
state clusters grows exponentially with increasing system
size but the ground-state behavior is dominated by a few
large similar clusters (and their inverse). Therefore, a dis-
tinct impression emerges: a huge number of arbitrarily dif-
ferent ground-state clusters exist, but by going to larger

and larger sizes most of them become unimportant. This
rules out any (nonstandard) MF picture with continu-
ous breaking of symmetry to be valid in total. Interest-
ingly, the result is compatible with the one step replica-
symmetry-breaking scheme which was observed for the
p-spin glass [30]. It exhibits a simple distribution of over-
laps while many different ground-state clusters are possi-
ble. However, further work is needed to determine which of
the remaining scenarios really holds for finite-dimensional
spin glasses.

Please note that the cluster-interpretation depends on
the definition of a cluster. By choosing a dynamic which
allows flips of more than one spin at a time, a different
definition of energy-barriers is implied and thus another
kind of clusters. But it should be stressed that the results
presented in this work do not depend on the way a cluster
is defined. Any method of sorting the ground states into
groups will work that takes the number of ground states
selected proportional to the size of the group, and ensures
that each state of a group has the same probability of
being used for the calculation.

Finally, it should be pointed out that not all results
previously obtained using genetic CEA are biased by the
disbalance of the ground-state distribution. The main out-
comes in [3,31] are not affected. Additionally, although
the old data are based on a wrong distribution, the re-
sults in [4] prove that there are arbitrary different clusters
present. The reason for P (|q|) → δ(q − qEA) is that most
of them become less important.
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